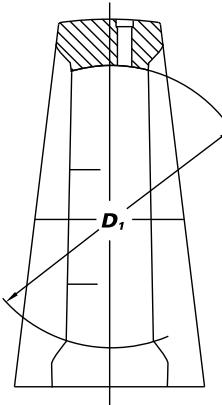


## Tolerances of spherical inside diameter of housings

Unit = .001 mm  
(.0001 in.)


| Nominal spherical inside diameter D1 |           |         |           | Symbol H        |     |                 |             | Symbol J        |             |                 |              | Symbol K        |              |                 |              |
|--------------------------------------|-----------|---------|-----------|-----------------|-----|-----------------|-------------|-----------------|-------------|-----------------|--------------|-----------------|--------------|-----------------|--------------|
| Over mm                              | Incl. in. | Over mm | Incl. in. | D1 m Deviations |     | D1 m Deviations |             | D1 m Deviations |             | D1 m Deviations |              | D1 m Deviations |              | D1 m Deviations |              |
|                                      |           |         |           | High            | Low | High            | Low         | High            | Low         | High            | Low          | High            | Low          | High            | Low          |
| 30                                   | 1.1811    | 50      | 1.9685    | +25<br>(+10)    | 0   | +30<br>(+12)    | -5<br>(-2)  | +14<br>(+6)     | -11<br>(-4) | +19<br>(+7)     | -16<br>(-6)  | +7<br>(+3)      | -18<br>(-7)  | +12<br>(+5)     | -23<br>(-9)  |
| 50                                   | 1.9685    | 80      | 3.1496    | +30<br>(+12)    | 0   | +38<br>(+14)    | -6<br>(-2)  | +18<br>(+7)     | -12<br>(-5) | +24<br>(+9)     | -18<br>(-7)  | +9<br>(+4)      | -21<br>(-8)  | +15<br>(+6)     | -27<br>(-11) |
| 80                                   | 3.1496    | 120     | 4.7244    | +35<br>(+14)    | 0   | +42<br>(+17)    | -7<br>(-3)  | +22<br>(+9)     | -13<br>(-5) | +29<br>(+11)    | -20<br>(-8)  | +10<br>(+4)     | -25<br>(-10) | +17<br>(+7)     | -32<br>(-13) |
| 120                                  | 4.7244    | 180     | 7.0866    | +40<br>(+16)    | 0   | +48<br>(+19)    | -8<br>(-3)  | +26<br>(+10)    | -14<br>(-6) | +34<br>(+13)    | -22<br>(-9)  | +12<br>(+5)     | -28<br>(-11) | +20<br>(+8)     | -36<br>(-14) |
| 180                                  | 7.0866    | 250     | 9.8425    | +46<br>(+18)    | 0   | +55<br>(+22)    | -9<br>(-4)  | +80<br>(+12)    | -16<br>(-6) | +39<br>(+15)    | -25<br>(-10) | +13<br>(+5)     | -33<br>(-13) | +22<br>(+9)     | -42<br>(-17) |
| 250                                  | 9.8425    | 315     | 12.4016   | +52<br>(+20)    | 0   | +62<br>(+24)    | -10<br>(-4) | +36<br>(+14)    | -16<br>(-6) | +46<br>(+18)    | -26<br>(-10) | +16<br>(+6)     | -36<br>(-14) | +26<br>(+10)    | -46<br>(-18) |

D1m is determined by the following equation:

$$D1m = \frac{D1\max + D1\min}{2}$$

Where D1max and D1min are maximum and minimum measurements of D1, respectively.

For practical purposes, bearing/housing fit is often expressed in terms of foot pounds of misalignment torque. **IPTCI** mounted units are typically machined to provide for a light interference fit. However, for special applications, **IPTCI** can provide clearance fit (H) or substantial interference fit (K).



## Materials of Housings

### Gray Iron

Cast in high strength gray iron, **IPTCI**'s standard cast housings are among the most rigidly designed and heaviest available in the industry. This enables **IPTCI**'s housings to withstand high vibration and shock loading.

### Ductile Iron

When extra strength is needed for extremely rugged applications, **IPTCI**'s ductile iron is an excellent alternative. Ductile iron is approximately 2.5 times stronger (tensile) than gray iron and also offers the benefit of reduced flex memory. Some **IPTCI** standard housing styles are available from stock in ductile iron. All can be made upon request.

### Stainless Steel & Thermoplastic

See page 59 for complete details.