

Installation

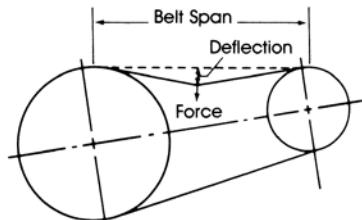
1. Clean sheaves/pulleys, and remove dust, dirt and oil.
2. Check for worn grooves using sheave gauge.
3. Use correct belt for sheave size
4. Never "roll" or "pry" the belts into the sheave grooves. Move the driver unit to allow belt to slip on easily.
5. Check alignment. Drive shafts must be parallel.
6. Rotate each sheave to check for wobble or bent drive shaft.
7. Tighten the belt take-up and then run the belt 10 minutes. Recheck and adjust tension, using tables on reverse.

Warning

When servicing a drive, be certain machinery is SHUT OFF and properly prevented from accidentally starting. Do not wear loose clothing, jewelry, etc. Keep guards on machinery when it is operating.

Rapid Belt Failure

SYMPTOM	CORRECTION
Belt cover wears rapidly	Replace sheaves
Slip burns-shiny sheave grooves	Increase tension
Belt hard and cracked	Heat condition; Ventilate drive; Check tension
Belt sticky or soft	Eliminate oil


Belt Tensioning

STEP 1: After measuring the belt span (see sketch) use a belt tension tester and apply perpendicular force to any ONE of the belts at the span mid-point. Measure the force required to deflect any of the belts 1/64 inch for every inch of span length. EXAMPLE: A 32" span deflection would be 1/64 inch x 32 or 1/2 inch.

Note: When new belts are installed on a drive, the tension will drop rapidly during the first few hours. Thus, for new belts, multiply the maximum deflection force shown in the tensioning tables by 1.33. Check tension frequently during the first 24 hours of operation. Subsequent retensioning should fall between the minimum and maximum forces shown in the tables.

STEP 2: Compare Step 1 deflection force reading with range of force in the following tensioning tables. If the force is below the minimum after any adjustment per above note, then the belts are too loose. If the force is greater than the maximum after any adjustment per above note, then the belts are too tight.

Readjust measured drive tension until the deflection force is between the maximum and minimum values shown in or calculated from the respective tensioning tables.

Classical V-Belt Tensioning Table

Belt	Small Sheave Dia. Range (inches)	Small Sheave RPM Range	Speed Ratio Range	Belt Deflection Force in Lbs.			
				Classical		Classical Cogged	
				Min.	Max.	Min.	Max.
A*	2.2	1750 to 3600	2.0 to 4.0	NR	NR	3.8	5.4
	3.2			3.1	4.5	3.9	5.6
	3.4-3.6			3.5	5.0	4.1	5.9
	3.8-4.2			3.8	5.4	4.3	6.3
	4.6-7.0			4.6	6.6	4.9	7.1
B*	4.0	1160 to 1800	2.0 to 4.0	NR	NR	7.1	10
	5.0-5.2			NR	NR	7.3	11
	5.4-5.6			6.0	8.8	7.4	11
	6.0-6.8			6.6	9.6	7.7	11
	7.4-9.4			7.4	11	7.9	12
C*	6.8	870 to 1800	2.0 to 4.0	NR	NR	12	18
	7.5			NR	NR	12	18
	8.0-8.5			NR	NR	13	18
	9.0-10.5			12	17	13	19
	11.0-16.0			13	20	13	19
D*	13.0	690 to 1200	2.0 to 4.0	20	29	-	-
	13.5-15.5			22	33	-	-
	16.0-22.0			25	37	-	-
E*	21.6	435 to 900	2.0 to 4.0	33	48	-	-
	24.0			33	48	-	-

* For Classical banded belts multiply the force in the table by the number of belts in the band.

Narrow V-Belt Tensioning Table

Belt	Small Sheave Dia. Range (inches)	Small Sheave RPM Range	Speed Ratio Range	Belt Deflection Force in Lbs.			
				Narrow		Narrow Cogged	
				Min.	Max.	Min.	Max.
3V*	2.20	1200-3600	2.00 to 4.00	NR	NR	2.8	4.1
	2.35-2.50			NR	NR	3.2	4.7
	2.65-2.80			3.2	4.7	3.5	5.1
	3.00-3.15			3.6	5.3	3.8	5.5
	3.35-3.65			4.1	5.9	4.1	6.0
	4.12-5.00			4.7	6.8	4.8	7.1
	5.30-6.90			5.2	7.6	5.8	8.6
5V*	4.40-4.65	1200-3600	2.00 to 4.00	NR	NR	9.0	13
	4.90-5.50			NR	NR	10	15
	5.90-6.70			11	17	11	17
	7.10-8.00			13	19	13	19
	8.50-10.90			15	22	14	20
	11.80-16.00			31	45	15	23
8V*	12.50-17.00	600-1200	2.00 to 4.00	-	-	-	-
	18.00-24.00			36	53	-	-

NR - Not Recommended

* For Narrow banded belts, multiply the force in the table by the number of belts in the band.

The deflection forces in these tables apply only to the listed belts currently being manufactured.

To Find	Given	Formula	
7. Belting			
Effective Tension	T_1 and T_2	$Te =$	$\frac{T_1 - T_2}{63025 \times HP}$
Effective Tension	HP, RPM, Pulley Radius	$Te =$	$\frac{RPM \times R}{63025 \times HP}$
Effective Tension	Torque, Pulley Radius	$Te =$	$Torque / R$
Effective Tension	Horsepower, Belt Velocity (FPM)	$Te =$	$(HP \times 33000) / FPM$
Total Load	T_1 & T_2	$TL =$	$T_1 + T_2$
8. Overhung Load			
Overhung Load	Torque, Diameter	$OHL =$	$(T \times 2) / Diameter$
Overhung Load	Effective Tension, Belt Factor $f = 1.50$ V-Belts $f = 2.50$ flat belts	$OHL =$	$Te \times f$
Overhung Load	Horsepower, Speed (RPM) Diameter, factor $f = 1.0$ chain $f = 1.25$ gear drives $f = 1.50$ V-belts $f = 2.50$ flat belts	$OHL =$	$\frac{126000 \times f \times HP}{Diameter \times RPM}$
Overhung Load	Weight	$OHL =$	Weight
9. Electricity			
Motor Speed (RPM)	Number of Poles	$RPM =$	$\frac{120 \times HZ}{No. of Poles}$
Horsepower Single Phase or Direct Current Motor	Volts, Amps, Power factor Efficiency	$HP =$	$\frac{Volts \times Amps \times Pf \times Eff.}{746}$
Horsepower 3 Phase Motor	Volts, Amps, Power factor Efficiency	$HP =$	$\frac{Volts \times Amps \times 1.73 \times Pf \times Eff.}{746}$
Horsepower	Watts	$HP =$	$Watts / 746$
Horsepower	Kilowatts	$HP =$	$KW / .746$
Motor Power (Watts), Single Phase	Volts, Amps, Pf, Eff.	$Watts =$	$V \times Amps \times Pf \times Eff.$
Motor Power (Watts), 3 Phase	Volts, Amps, Pf, Eff.	$Watts =$	$1.73 \times V \times Amps \times Pf \times Eff.$
10. Temperature			
Degrees Fahrenheit	Degrees Centigrade	$^{\circ}F =$	$(1.8 \times ^{\circ}C) + 32$
Degrees Centigrade	Degrees Fahrenheit	$^{\circ}C =$	$5/9 (^{\circ}F - 32)$
11. Metric Conversions			
Inches x 25.4 = Millimeters			Millimeter x .0394 = inches
Pounds x .455 = Kilograms			Kilogram x 2.2 = pounds
U.S. Gallons x 3.785 = Liters			Liter x .264 = U.S. Gallon
Pounds (Force) x 4.448 = Newtons			Newton x .2246 = Pounds (Force)
Pounds inches x .113 = Newton Meters			Newton Meters x 8.85 = Pound-ins.
Horsepower x .746 = Kilowatts			Kilowatts x 1.34 = Horsepower
Pounds/in ² (psi) x .0069 = Newtons/mm ²			Newton /mm ² x 145 = Pounds/in ²
BTU x .00029 = Kilowatt Hours			Kilowatt Hours x 3415 = BTU's

Engineering Calculations Quick Reference Guide

Torque	
<u>(Torque, Pound-inches) (RPM)</u>	
Horsepower =	63,025
<u>(Torque, Pound-feet) (RPM)</u>	
Horsepower =	5,252

Flywheel Effect, WR^2

$$WR^2 = \frac{0.17773F(D_o^4 - D_1^4)}{1000} - \frac{NY(D_o - Z)^3}{1000} \text{ lb.-ft}^2$$

for gray iron. Multiply by 1.08 for steel.

Where: D_o = Outside diameter of rim, inches.
 D_1 = Inside diameter of rim, inches.
 F = Face width of rim, inches
 N = Number of grooves
 Y = Groove constant from table
 Z = Groove constant from table

Torque Required to Accelerate or Decelerate a Flywheel

The torque required to uniformly accelerate or decelerate a sheave, pulley or flywheel can be calculated as follows:

$$\text{Torque (in. lbs.)} = \frac{.03908 \times N \times W \times R^2}{t} \quad \text{Torque (ft. lbs.)} = \frac{.003257 \times N \times W \times R^2}{t}$$

N = Difference between initial and final RPM.

W = Weight of rim in pounds.

R = Mean Radius of Sheave Rim, Pulley or Flywheel in feet.

t = Time required to effect speed change, in seconds.

Data for WR^2 Calculations

Groove	Pitch Diameter	Add to PD to find D_o	Outside Diameter (in)	Outside Diameter (D_o) Minus Inside Diameter (D_1) for Standard Sheaves	Y	Z
3V	-	-	up to 10.6	1.2	.113	.30
	-	-	10.7 to 25.0	1.3	.113	.30
	-	-	25.1 to 35.5	1.5	.113	.30
5V	-	-	up to 21.2	1.9	.320	.50
	-	-	21.2 to 31.5	2.0	.320	.50
8V	-	-	37.5 to 50.00	2.2	.320	.50
	-	-	up to 22.4	2.7	.885	.80
	-	-	22.5 to 53.0	2.9	.885	.80
-	-	-	53.1 & up	3.0	.885	.80
A Multi-Duty	All	.75	-	1.6	.377	.50
B Multi-Duty	All	.35	-	1.6	.377	.50
A	All	.25	-	1.5	.238	.40
B	All	.35	-	1.7	.384	.50
C	Up to 18.0	.40	-	2.1	.696	.65
C	20.1 to 50.0	.40	-	2.2	.696	.68
D	Up to 20.0	.60	-	2.9	1.280	.90
D	20.0 to 58.0	.60	-	3.0	1.280	.90
E (Special)		.80	-		2.050	1.14